
The Trouble With Transitions

Aaron A. Reed

Oct 15, 2019 · 7 min read

In my last post I described the .quant format, a minimalist syntax I created for writing

Subcutanean (a novel that changes each time it’s printed). For example:

Only you can see this message

This story's distribution setting is o�. Learn more

https://medium.com/@aareed?source=post_page-----720c11e9f0ee----------------------
https://medium.com/@aareed?source=post_page-----720c11e9f0ee----------------------
https://medium.com/@aareed/the-trouble-with-transitions-720c11e9f0ee?source=post_page-----720c11e9f0ee----------------------
https://medium.com/@aareed/a-minimal-syntax-for-quantum-text-ac5b34308593
https://igg.me/at/subcutanean
https://help.medium.com/hc/en-us/articles/360018834334?source=post_page-----720c11e9f0ee----------------------


The DEFINE command sets the variable verbose to either true or false at random,

producing one of two possible outputs when the text is rendered:

I’m having a really quite wonderful day, actually, thank you for asking.

I’m having a great day.

I actually use variables like this a lot in Subcutanean to ensure that even though

decisions are made at random, the output has a degree of consistency: one narrator

might tend to use bigger words, another might consistently be less honest about their

emotions, and so on. In fact I’m doing this even without explicit variables — but more

about that in a later post. (Update: this one!)

The .quant syntax was able to remain straightforward in part because of my design

decision not to allow any nesting or conditional logic. But almost as soon as I started

authoring, and despite my purity of intentions, I stumbled across a situation that was

almost impossible to handle without boolean logic: transitions.

Subcutanean contains a lot of sequences — ranging in length from sentences to whole

scenes — that might randomly be present or absent, or might at random appear in one of

several versions. Sometimes these sequences would abut one other, and when this

happened, it became very difficult to write natural-sounding text that could transition

between any possible preceding and following text.

For instance, say in one possible lead-in two characters get drunk, while in another they

don’t. The next sequence could be either a midnight walk or sleeping the evening off.

The natural transitions in all four cases — the way a human would write them — are

probably unique:

[drunk story] Heads spinning, we spilled outside, raucous. [midnight walk]

[drunk story] We knew our limits; it was time to call it a night. [sleep it off]

[not drunk] Wanting some fresh air, we stepped outside. [midnight walk]

[not drunk] It was getting late. [sleep it off]

You don’t always need unique text for each possible combination, but clearly a natural

transition references both what came before and what’s coming next. It’s often very hard

to write these in such a way that you don’t need to know something about both states to

do so. Even single-word transitions have implications about what’s coming before and

https://medium.com/@aareed/intentional-collapse-plausibly-human-randomized-text-e901220cbc3d


after that might not always hold true: this is of course the entire reason languages have

different transition words in the first place, like and, but, still, anyway, therefore,

nevertheless, and so on. Each implies something different about why these two thoughts

are connected.

I tried to write my way around this for a while, but eventually decided I did need some

form of combinatorial conditions, after all. But I was wary about most ways I could think

to add them. Adding boolean logic, for instance, such as with a syntax like [drunk AND

MidnightWalk>…], could be a slippery slope: if I supported AND, shouldn’t I also

support OR? What about either of those in combination with NOT? If I supported two

terms, shouldn’t I also allow three or four or however many I wanted? And once I had

more than two, wouldn’t I also want to control order of operations with parentheses?

And then nested parentheses? As the complexity ramped up, it would become

increasingly difficult to protect against both logic and parsing errors. Recall that for

Subcutanean, the stakes are high: any error in text rendering gets shipped off to a print-

on-demand service and enshrined in a printed book. I could be as careful as I wanted,

but inevitably, increasing complexity like this compounds the risk of mistakes slipping

through.

Another option would be to allow nesting, maybe with a syntax like [verbose>

[angry>…]]. But nesting without indentation, I’ve decided after trying this in multiple

past projects, is just inevitably a bad idea. It’s hard for both authors and code to parse

and error-correct, and it allows all kinds of subtle errors to creep in where the syntax

looks correct at a glance but certain possibility states are unaccounted for, or text is

getting printed in situations it shouldn’t. For my use case, with these random bits

sprinkled in and among paragraphs of prose, using indentation instead would feel

awkward, breaking up the flow of those paragraphs and adding concerns over when line

breaks and spacing were code constructs versus literal output. I didn’t want to go down

this route, either.

Ultimately I went for a third option. Remember in my last post when I said I didn’t want

to add GOTOs or routines? Well… I added routines. I called them macros, but basically

they jump to a label, print the text found there, and then return.



This was definitely ugly in certain ways, but solved some problems. It let me reuse

chunks of text in multiple variants, if for instance I had a moment in the middle of two

different scenes that would be the same regardless of which one was chosen. It also

allowed for elegant nesting: the contents of a macro can contain another macro with

additional conditions, without an individual list of variants ever getting overly

complicated. Without any further changes or additions, this syntax could also support

most conditional logic I could think of: you can use it to emulate AND, OR, or NOT

without much trouble, and nest things arbitrarily deeply. The flow of the prose is broken,

of course — during editing, you might have to jump around the document to follow it,

especially in longer variants where the macro definition might be pages away — but I

still felt this was a better approach than the alternatives.

The biggest danger this change introduces is removing the context from the seams of the

inserted text. If, for instance, I’d forgotten to include periods at the ends of each subject

change expansion, I’d get malformed output like Heads spinning, we spilled outside,

raucous The walk down the hill… . I’ll talk in a future post about a separate tool I wrote to

help with this problem. (Update: and that one’s here!)

One final twist in the .quant syntax, also brought about from my unique use case: I

wanted a way to preserve one particular rendering of the entire text, which was the first

one I wrote.

Subcutanean actually began life as a traditional novel, and in fact had been through a

whole gamut of drafts and revisions before I ever started thinking about quantum-izing

it. As I began this new and more significant round of revisions, adding variant

possibilities throughout, I wanted to reserve the right to change my mind and get back

the “original” linear version at any point, even while continuing to edit and improve it

alongside the alternatives: an escape hatch, if you will, in case the project turned out to

be ill-conceived.

To achieve this, I adopted the convention that the first option in any list of variants

would always be the original, “safe” version. I could then add a toggle for my renderer to

consistently choose the first variant, and thus pull the original text back out of the

https://medium.com/@aareed/when-to-not-trust-dynamic-text-81aec56093c4


quantum soup any time I wanted. This convention was unambiguous except in the

situation of single-option text which would either appear or not: here I needed a new

symbol to indicate whether the original version said something, or nothing:

The caret could also be used to mark a variant other than the first one as the new

preferred version, in case I changed my mind about which one I liked better. In fact as

the writing continued I found myself doing this more and more often. This soon evolved

into a personal quality metric for the quantum version of Subcutanean: when revising

and rewriting a list of alternatives, I knew I was done when I could no longer decide

which one to mark as “best”: when I’d be equally proud to have any of them carry the

story. As I reached this state with more and more of the writing, I began to believe my

new vision of a multilinear Subcutanean — where I’d be completely happy sending off a

random rendering, sight unseen, to a reader — could really work. The notion of needing

to mark the “original” version became, in the end, fully vestigial.

I still had the problem of ensuring that every one of those millions of possible

combinations of text would have perfect transitions, no misplaced punctuation, and no

awkward joins between static and variant text. In a future post I’ll talk about the tool I

wrote specifically to help solve that problem.

Subcutanean is an upcoming horror novel that changes with each new copy. Pre-order it

now, or follow the project on Twitter, Facebook, or Goodreads.

https://igg.me/at/subcutanean
http://twitter.com/subcutanean
http://fb.me/subcutanean
https://www.goodreads.com/book/show/48410595-subcutanean


Interactive Fiction Procedural Text Programming Subcutanean Indie Books

About Help Legal

https://medium.com/tag/interactive-fiction
https://medium.com/tag/procedural-text
https://medium.com/tag/programming
https://medium.com/tag/subcutanean
https://medium.com/tag/indie-books
https://medium.com/?source=post_page-----720c11e9f0ee----------------------
https://medium.com/about?autoplay=1&source=post_page-----720c11e9f0ee----------------------
https://help.medium.com/?source=post_page-----720c11e9f0ee----------------------
https://medium.com/policy/9db0094a1e0f?source=post_page-----720c11e9f0ee----------------------

