
A Minimal Syntax For Quantum Text

Aaron A. Reed

Oct 10, 2019 · 8 min read

Subcutanean, my upcoming novel that changes each time it’s printed, works like this:

there’s a master text with the whole story, occasionally splitting into alternate versions

and variants at the level of words, sentences, or even whole scenes. Each time the book is

“rendered” for a new reader, a single option from each set of variants is randomly

chosen, resulting in one particular version of the story. I wrote earlier about the

aesthetics of why you’d do this, but the how is interesting too.

I call this kind of writing “quantum authoring,” because the author must hold all the

possible versions in their head at once and keep each one interesting and consistent.

Unfortunately, this kind of writing is often intertwined with programming or other

mentally exhausting tasks, like operating a complex tool or remembering a finicky

syntax. For this project, I wanted to write in a format that was as lightweight and

unobtrusive as possible, so I could keep my brain entirely in “writing” mode while

working on content. What I came up with was a minimal format called .quant, and I

want to talk a bit about why I made it and what it’s good for.

The .quant format had a couple fairly simple requirements. First, I didn’t want it to

distract from my creative process. Having written a lot of procedural text over the years

(usually for games) there’s nothing worse than trying to be creative when you’re trying

to remember syntax, mistyping special characters, or fighting with compiler errors.

Only you can see this message

This story's distribution setting is o�. Learn more

https://medium.com/@aareed?source=post_page-----ac5b34308593----------------------
https://medium.com/@aareed?source=post_page-----ac5b34308593----------------------
https://medium.com/@aareed/a-minimal-syntax-for-quantum-text-ac5b34308593?source=post_page-----ac5b34308593----------------------
https://igg.me/at/subcutanean
https://medium.com/@aareed/twisty-little-novels-all-different-cd9799d93877
https://help.medium.com/hc/en-us/articles/360018834334?source=post_page-----ac5b34308593----------------------


A particularly egregious example of dynamic text authoring for The Ice-Bound Concordance, involving

escaped quote marks, spacing codes and hacks, variable character genders, nested conditionals, and two

di�erent systems for variable text. This was the kind of thing I was hoping to avoid this time around.

By contrast, I wanted .quant writing to be as simple to type as possible. I also wanted it to

be as close to idiot-proof as possible, for a very important reason: since the Subcutanean

generator automatically exports a new print-ready PDF from the master file each time a

copy of the book is ordered, which is then uploaded to a print-on-demand service,

http://ice-bound.com/


turned into a a physical book, and shipped off — all without manual human intervention

— any errors would be much more galling. Normally the worst-case scenario for some

broken procedural text is that a player sees a mistake in a momentary message. Here,

that error would be preserved forever in the pages of the book: or in the worst case,

cause its entire text to be corrupted, resulting in an unhappy buyer and an expensive

replacement.

These two requirements — a minimalist syntax and trying to reduce as much as possible

the chance of error — led to some early initial constraints. First, I decided there would be

no routines or GOTOs in the format. This was an easier decision than it would have been

for a game, because Subcutanean has no branching or interaction: the plot proceeds

chapter to chapter in the same way for each reader, varying not in the overall structure

but in the way individual scenes play out, in which particular details are revealed or

omitted. I also didn’t need any reusable pieces of text that might have to show up in

different contexts or situations, as one would generally need for an interactive work, so

that also made this simplification more possible.

Second, I realized I needed two major kinds of variation: simple alternatives that didn’t

need to be reasoned over or remembered, and choices that would impact text in multiple

places. The latter implies variables, which can be set and later checked, so I needed to

account for that.

I considered a number of existing solutions for procedural text authoring, but in part

because my use case is so particular, none of them quite met my needs. Languages like

Ink designed for games with explicit choice points weren’t really appropriate, as these

are essentially centered entirely around GOTOs as a paradigm.

https://www.inklestudios.com/ink/


Ink (running in IDE Inky) is a nice minimalist interactive text language, but designed for branching stories with

explicit choices. (Screenshot courtesy Inkle.)

Tracery is a popular language for procedural text, but is optimized for writing long

chains of nested expansions. This means most of what you’re doing is defining keys

meant to be expanded elsewhere, which was more heavyweight than I needed: a major

desiderata was being able to read through the dynamic text along with the static text,

composing and editing both together within the same flow.

Using Tracery by Kate Compton in Javascript; example courtesy Dan Cox.

I’m also very familiar with Inform 7’s way of handling variant texts, and thought about

basing my compiler around its syntax. But it’s also a bit heavyweight for my use case, in

http://tracery.io/
http://inform7.com/


part because of its natural language paradigm, and in part because of the more powerful

control it offers over different things to do with textual variants.

Text substitutions in Inform 7.

Other tools were also unsuitable for various reasons, such as requiring IDEs rather than

support for text files. I did in fact find things quite similar to what I was looking for, such

as the Javascript library Bracery (which starts off with a very similar syntax to the one I

ended up using, before getting more complex). But ultimately I decided to roll my own

Python tool that would work with the rest of the tech stack I needed to make this project

happen.

In the .quant format as it ended up, the most common use case is the simple inline

variant. These are indicated like this:

Square brackets were chosen (as were all control symbols) for the unlikelihood that

they’ll appear in regular prose. They save a shift keystroke compared to curly braces.

Pipes are better than slashes (which do sometimes appear in prose) and in most fonts

stand out a bit above and below the line, making them more visually obvious. Note that I

also made a syntax highlighter for Sublime Text, seen in these screenshots, as the first

line of defense against obvious syntax errors like forgetting a bracket.

A single bracketed text will either be printed or not, at random: this is the same as

[text|] but slightly more elegant. For instance, the below might result in “…I almost

forgave him” or “…I forgave him.”

https://github.com/ihh/bracery


(Technically, written this way the null option above would have two spaces between I

and forgave. Because I knew my output was LaTeX code which ignores extra whitespace,

I knew I could likewise ignore this issue: the same would also have been true if my

output was HTML. In other contexts (like Inform 7, for instance) one generally needs to

spend more time getting the exact position of the brackets right because spacing is

preserved in the output. I did still have to worry about punctuation joins and so on — in

a later post I’ll talk about a separate tool I built to help catch those errors.)

Sometimes you want certain alternatives to appear more or less often. I thought about

whether I needed this for Subcutanean — it felt conceptually purer in some ways to keep

the selection entirely random — but I decided I did want to allow for the possibility of

some texts that were rare or even very rare, appearing only in one or two books out of a

hundred. It would be easy to get bogged down with possibilities here: Inform, for

instance, supports various kinds of randomness like “with decreasingly likely outcomes”

that makes each option less likely be selected than the one before it. But I decided I

wanted to deploy this in specific places with tight control over distributions, so

ultimately I just went with a simple method of directly specifying numeric probabilities

for each option, in the situations where I needed to do so.

Not actually a line from Subcutanean.

The numbers must always sum to 100, except that the final number can be omitted to

assume the remaining distribution space: in this example leaving off the 5> would still

have the effect of a 5% chance of choosing “C-Dog”. The parser can then complain if the

numbers don’t add up. This exactness gets annoying for very long lists of variants but I

didn’t anticipate needing very many of those. In fact the current draft has only one

instance of a very long list that specifies probabilities.



The last major part of the syntax was to control random selections that would affect

multiple pieces of text: setting variables.

These are explicitly defined so the compiler can catch typos or mismatches when they’re

used, and they’re not case sensitive because case sensitivity is dumb. For my particular

use case I didn’t need anything more complex than booleans or enums, which the two

examples above demonstrate: for each rendering, BreakupSubplot will be randomly true

or false, and either verbose or taciturn will be true; if there were more options here, only

one of them would be true on any given run. (You can also assign probabilities to

variable assignments: [DEFINE 25>verbose].)

Text can then be gated based on whether a variable is true by starting with the variable

reference:

To reduce the possibility of a word to be printed getting confused for a variable reference

(by either the parser or the writer), a variable is allowed to appear in exactly two places:

immediately after a DEFINE, or immediately before a > . The distinct separator

character provides precise control over leading spacing (compared to a potentially

ambiguous syntax, something like [@verbose rather ebullient…] and makes it easier

to catch any spurious uses: > it turn must be preceded by a number or a recognized

variable.

I thought long and hard about whether I should add conditional logic to this syntax, for

instance to have text only printed when both BreakupSubplot and verbose are true. I



finally decided not to allow this, in part because of the much greater likelihood of

introducing authoring errors this way, but mostly out of a sense of aesthetic purity. After

many of my past projects with exceedingly complicated procedural text, I thought it

would be a nice exercise to keep all the randomness at a single hierarchical level. No

spending time writing complex nested prose that might only be seen by a tiny percentage

of readers; no compounded branches multiplying the amount of possibility states I

needed to cover for a single sentence. If I wrote five variants (hand-selected usages of

probability aside), there’d be a one in five chance that any of those pieces of text would

be seen. Simple and clean.

I felt very smug about this until I immediately hit on a situation that required compound

decisions after all, and had to go back to the drawing board. More about that in my next

post.

Subcutanean is an upcoming horror novel that changes with each new copy. Find out how

to pre-order it now, or follow the project on Twitter, Facebook, or Goodreads.

Inform 7 Tracery Ink Procedural Text Games Writing

https://medium.com/@aareed/the-trouble-with-transitions-720c11e9f0ee
https://igg.me/at/subcutanean
http://twitter.com/subcutanean
http://fb.me/subcutanean
https://www.goodreads.com/book/show/48410595-subcutanean
https://medium.com/tag/inform-7
https://medium.com/tag/tracery
https://medium.com/tag/ink
https://medium.com/tag/procedural-text
https://medium.com/tag/games-writing


About Help Legal

https://medium.com/?source=post_page-----ac5b34308593----------------------
https://medium.com/about?autoplay=1&source=post_page-----ac5b34308593----------------------
https://help.medium.com/?source=post_page-----ac5b34308593----------------------
https://medium.com/policy/9db0094a1e0f?source=post_page-----ac5b34308593----------------------

