
When to Not Trust Dynamic Text

Aaron A. Reed

Oct 24, 2019 · 6 min read

My upcoming novel Subcutanean is written such that each time it’s regenerated for a

new reader, hundreds of moments of textual variation get collapsed down into a single

possibility. If you’ve written dynamic text before (for games, maybe) you’re probably

aware that this isn’t as easy to get right as it might first seem. Errors both tiny and

tremendous can easily appear. Some of the more insignificant ones around punctuation

or spacing show up in the output like typographical mistakes:

great. I’ll see you at the store.

Have fun!. See you later.

She loved chocolateand to swim in the sea.

In each of these cases, the author probably forgot a detail of context around the dynamic

text they inserted: that it needed to be upper cased because it would be used at the start

of a sentence, or that it should include or omit punctuation or a space. These are

common gotchas when you’re working with two pieces of text that will end up next to

each other but are written in different places.

Sometimes a join is less about a mechanical problem and more about natural phrasing.

You might have written a clever expansion that can say “Yes” in a number of different

ways: “Sure,” “OK,” “Sounds great,” and so on. But then one of your Yes expansions

might show up somewhere it sounds awkward:

Only you can see this message

This story's distribution setting is o�. Learn more

https://medium.com/@aareed?source=post_page-----81aec56093c4----------------------
https://medium.com/@aareed?source=post_page-----81aec56093c4----------------------
https://medium.com/@aareed/when-to-not-trust-dynamic-text-81aec56093c4?source=post_page-----81aec56093c4----------------------
https://igg.me/at/subcutanean
https://help.medium.com/hc/en-us/articles/360018834334?source=post_page-----81aec56093c4----------------------


“Are you Spartacus?”

“Sounds great, I am.”

This kind of thing can lead to all kinds of awkward output texts, and a good chunk of the

somewhat stilted, unnatural tone we associate with chatbots comes from these kinds of

awkward insertions:

I gave the book to he.

Hi, Nicole but you can call me Nikki lol 😛 , it’s great to meet you!

She loved chocolate bar and swim in the sea.

These mistakes are even more awkward, by the way, once they’re rendered in a fancy

way and inserted into a context that looks like a human created it:

Background courtesy Pam de Butler from Pixabay

Sometimes dynamic text authoring mistakes can be more serious, like when a vital

control symbol is mistyped:

“No,” you say firmly, “I could never love you[Yes, kiss me, kiss me now!” you cry, throwing

your arms around {love_interest}’s neck.]]]

https://pixabay.com/users/pameladebutler-2517809/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=1624678
https://pixabay.com/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=1624678


In a game, a Twitter bot, a web interface, or a NaNoGenMo project, these kinds of

mistakes are generally forgivable by readers (if not their authors) as an interesting

glimpse behind the curtain. This is in part because some of the charm of procedural text

lies in the possibility of the unexpected. We’re intrigued when we see oopsies like this,

because it reminds us of the generative nature of the system we’re interacting with.

Subcutanean, however, has very different goals. The output is meant to be a print novel

— generated, printed, and shipped in an automatic process with no human review —

that will not only remain on your shelf for (possibly) decades, but should also be as

immersive and compelling as any other book. The variable possibilities are meant to

interest you in reading it in the first place, but not be a distraction once you’ve actually

settled down with a copy. In some ways this project is the precise opposite of most

generative text works: I want to guarantee that nothing too unexpected can happen,

maintaining complete authorial control over every possible output.

Excerpts from two typeset renders of Subcutanean: in one, the narrator’s drunk.

So I decided to take the nuclear option. For each piece of text that could vary, I would

manually confirm it. In context. And each time any of the variants or any of that context

changed, I would manually confirm it again.

. . .

To understand why this is even possible, I should explain that Subcutanean only rarely

contains nested expansions (I wrote about why here), as are common when working

with something like Tracery. Nor is the text unbounded in the way a procedural text

project that uses Wordnet or a Wikipedia corpus might be: each moment of variation is

deliberately and thoroughly curated. So this wasn’t as impossible a task as it might

sound. Showing the author a range of sample outputs, as many and as quickly as

possible, is of course a useful approach adopted by other procedural text authoring

https://nanogenmo.github.io/
https://medium.com/@aareed/the-trouble-with-transitions-720c11e9f0ee
http://tracery.io/
https://wordnet.princeton.edu/


systems like Tracery or Character Engine: the difference here was that I wanted to not

only show all the variations, but require that each one be manually validated.

The key challenge was to keep thisfrom being a slog, a chore so laborious and annoying

that I’d stop doing it, and risk immersion-breaking mistakes slipping through.

To achieve this, I developed a module in my rendering pipeline called Confirm. Each

time I export the text, this module shows a couple possible ways bits of text can be

rendered, like an aide discretely handing over a couple documents to the boss for a

signature. The boss is too busy to sign the whole stack, but if the aide gets a few

signatures each time there’s a free moment, eventually everything will be processed.

The Confirm module intervenes before the formatting and output-generation part of the

pipeline. First, the whole master text is scanned and each bit of variable text is given a

unique key, made up from the line before, the variants themselves, and the line after.

The module then renders the “before” and “after” text (including rendering any variants

within those, if necessary), glues this together with each way the current variant can be

rendered, and shows these outputs to me. Little carets are added between the lines to

show exactly where the variant starts and ends. I can take a quick look at each version in

a basic double-spaced ASCII rendering (with all formatting and other control characters

removed), reading the output as normal prose and only paying attention to the carets if

something looks wrong.

Example of a very simple con�rm with an optional phrase “you and I.” The text before and after is also

slightly di�erent; the system picks one way to render before and after context for each individual con�rm

https://spiritai.com/product/character-engine/


(though these can be regenerated with a keypress to see other possibilities).

If everything looks okay, a keypress confirms that set of variants in that particular

context — and as long as neither change, the system won’t bother me about it again. But

if I edit the surrounding text, the variants, or add or remove options, the key has

changed: and therefore that chunk goes back into the review queue. When performing

final renders for the eventual book deliverables, the system won’t move on to PDF

rendering until each unique key has been confirmed — but I’ll have been working on it

piecemeal as I go, one change at a time, rather than saving that huge stack of documents

for signatures on the very last day.

The bit about the before and after context is key: sometimes a variant itself is fine, but

sounds awkward given what came earlier. A word repetition, for instance, is hard to

catch if it’s split between an introduction and the start of the third option in a set of

multi-paragraph variants. This kind of thing is easy to catch with Confirm, as well as all

the simpler errors around spacing or punctuation, which also stand out clearly.

Catching optional text that needs a space before it.

Of course, the next step is rendering a print-ready PDF from a procedurally assembled

LaTeX file, and making sure that nothing’s gone wrong in that process — no overfull

boxes have spilled text into margins, no misplaced control characters have erased or

distorted huge chunks of text. But that’s a whole new set of problems, and I’ll save those

for a future post.



Subcutanean is an upcoming horror novel that changes with each new copy. Find out how

to get your own unique copy. You can also follow the project on Twitter, Facebook, or

Goodreads, or check out more design posts.

Typography Procedural Text Text Generation

About Help Legal

https://igg.me/at/subcutanean
https://igg.me/at/subcutanean
https://twitter.com/subcutanean
https://fb.me/subcutanean
https://www.goodreads.com/book/show/48410595-subcutanean
https://medium.com/@aareed/subcutanean-design-posts-e25d9c158cce
https://medium.com/tag/typography
https://medium.com/tag/procedural-text
https://medium.com/tag/text-generation
https://medium.com/?source=post_page-----81aec56093c4----------------------
https://medium.com/about?autoplay=1&source=post_page-----81aec56093c4----------------------
https://help.medium.com/?source=post_page-----81aec56093c4----------------------
https://medium.com/policy/9db0094a1e0f?source=post_page-----81aec56093c4----------------------

